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The Kondo lattice model describes a quantum phase transition between the antiferromagnetic state and
heavy-fermion states. Applying the dual-fermion approach, we explore possible superconductivities
emerging due to the critical antiferromagnetic fluctuations. The d-wave pairing is found to be the leading
instability only in the weak-coupling regime. As the coupling is increased, we observe a change of the
pairing symmetry into a p-wave spin-singlet pairing. The competing superconductivities are ascribed to
crossover between small and large Fermi surfaces, which occurs with the formation of heavy quasiparticles.
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Heavy-fermion superconductivities in rare-earth and
actinide materials commonly appear near the antiferromag-
netic (AFM) or ferromagnetic quantum critical point
(QCP). This situation resembles high-Tc cuprates, where
d-wave superconductivity (d SC) with the gap symmetry
ϕk ∝ cos kx − cos ky is realized due to AFM fluctuations of
q ¼ ðπ; πÞ≡ Q. This similarity suggests a possibility of the
d SC also in heavy-fermion systems near the AFM QCP.
However, since the microscopic origin of the magnetism is
different between d- and f-electron systems, pairing
interactions derived from the magnetic fluctuations may
be dissimilar, resulting in a different type of superconduc-
tivity in f-electron systems.
Motivated by the above idea, we consider the following

simplified situation to focus on a difference in the micro-
scopic interactions. We first suppose a tight-binding band
on the square lattice, ϵk ¼ −2ðcos kx þ cos kyÞ, which
exhibits a perfect nesting at q ¼ Q at half filling. In the
case of the cuprates, the Hubbard interactionU gives rise to
the AFM long-range order, and carrier doping leads to the d
SC. In heavy-fermion systems, on the other hand, the
nesting of the conduction band leads to the AFM ordering
of localized f electrons through the RKKY interaction. Our
question now is whether the d SC is realized in this case as
well by tuning the system toward the QCP, and if not,
which type of pairing is favored?
For this purpose, we explore possible unconventional

superconductivities in the two-dimensional Kondo lattice
model. The Hamiltonian reads

H ¼
X

kσ

ϵkc
†
kσckσ þ J

X

i

Si · si; ð1Þ

where si ¼ ð1=2ÞPσσ0c
†
iσσσσ0ciσ0 . The number of lattice

sitesN is taken to beN ¼ L2 with L ¼ 32; 64; 128. Various
numerical methods have been applied to the Kondo lattice
with the focus on the magnetic properties [1–6]. Further

elaborate calculations are necessary to elucidate pairing
fluctuations lying near the magnetic instability [7].
In order to address superconductivity in the Kondo

lattice, we need an approximate method which, at least,
captures Kondo physics and AFM fluctuations around the
QCP. The dynamical mean-field theory (DMFT) takes full
account of local correlations [8], and hence of Kondo
physics. Indeed, formation of heavy quasiparticles was
traced at finite temperatures [9], and a quantum phase
transition between the Kondo paramagnet and the AFM
state was derived [10,11]. We work on an extension of the
DMFT to describe the influence of critical AFM fluctua-
tions on heavy quasiparticles.
The dual-fermion approach provides a way to perform

diagrammatic expansion around the DMFT [12,13]. In
particular, inclusion of ladder-type diagrams as in the
fluctuation exchange approximation describe long-range
correlations, which lead to paramagnon excitations [14,15],
the d SC in the Hubbard model [16], and the correct critical
exponents in the Falikov-Kimball model [17]. A further
advantage of the dual-fermion method as compared with
related theories [18–21] is its applicability: The framework
is easily applied to the Kondo lattice model as presented
below.
Formalism.—In the path integral representation using

Grassmann numbers, the partition function of the model (1)
is written as Z ¼ R Q

i½Dðc�i ciÞDSi�e−S with the action

S ¼
X

i

Simp
i þ

X

ωkσ

ðϵk − ΔωÞc�ωkσcωkσ: ð2Þ

Here Simp is the local part defined by

Simp
i ¼ −

X

ωσ

ðiωþ μ − ΔωÞc�ωiσcωiσ þ JSi · si: ð3Þ

The dual-fermion transformation is performed on the
kinetic-energy term described by the second term of S.
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On the other hand, the difference between the Kondo lattice
model and the Hubbard model lies in the local part Simp.
Therefore, the procedure deriving the dual-lattice action in
the Hubbard model can be directly applied to the Kondo
lattice, leaving the difference in the local interactions.
Introducing dual fermions d and formally integrating out
the variables c and S at each site, we arrive at the lattice

model ~Z ¼ R Q
iDðd�i diÞe− ~S , which is written only with

the dual fermions [12,13]

~S ¼
X

ωkσ

ð− ~G0
ωkÞ−1d�ωkσdωkσ

−
1

4

X

1234

γσ1σ2σ3σ4ω1ω2ω3ω4
d�ω1k1σ1

d�ω2k2σ2
dω3k3σ3dω4k4σ4 : ð4Þ

Information of the local interaction enters in ~G0 and γ. The
propagator ~G0 is defined by ~G0

ωk ¼ ðg−1ω þ Δω − ϵkÞ−1 −
gω with gω ¼ −hcωiσc�ωiσiimp being the local Green function

in the system described by Simp
i . The interaction coefficient

γ corresponds to the vertex part in the impurity system:
γ1234¼½hc1c2c�3c�4iimp−g1g2ðδ14δ23−δ13δ24Þ�=ðTg1g2g3g4Þ,
where we used abbreviations such as 1≡ ðω1; σ1Þ. In
deriving Eq. (4), we neglected many-body interactions
that involve more than three particles. The validity of this
approximation was confirmed numerically [14] and also
supported in terms of 1=d expansion [16]. We compute gω
and γ using the continuous-time quantum Monte Carlo
(QMC) method [22] applied to the Kondo impurity
model [23].
Our task is now to evaluate the dual self-energy ~Σωk,

which is connected to the original Green function Gωk by
the exact formula [12,13] Gωk ¼ ½ðgω þ gω ~ΣωkgωÞ−1 þ
Δω − ϵk�−1. We take fluctuation-exchange-type diagrams
in the particle-hole channel expressed in Fig. 1(a) to take
account of critical AFM fluctuations [14–16] [24]. After
~Σωk is obtained, we update the hybridization function Δω

and solve again the effective impurity problem until the
self-consistency condition

P
k
~Gωk ¼ 0 is fulfilled.

QCP.—We first identify the quantum phase transition
between the Kondo insulator and the AFM insulator at half
filling. According to a lattice QMC calculation [1], the
critical coupling is estimated at JQMC

c ¼ 1.45� 0.05.

Comparing with this value, we shall check the accuracy
of our approximation.
In the dual-fermion approach, the AFM fluctuations may

be observed through eigenvalues of the matrix Aωω0 ¼
−ð1=NÞPk

~Gωk
~Gω;kþQγ

sp
ωω0 [16]. Here, γspωω0 denotes the

spin channel of the local vertex, γspωω0 ≡ γ↑↑↑↑ωω0ω0ω − γ↑↓↓↑ωω0ω0ω,
The transition takes place when the largest eigenvalue λAFM
exceeds 1. Because of the Mermin-Wagner theorem [25],
the AFM transition is forbidden at T ≠ 0 and λAFM follows
the critical behavior 1 − λAFM ∝ e−βΔ when the ground
state is AFM [26,27]. On the other hand, if the AFM is
suppressed by the Kondo effect, λAFM becomes constant at
low temperatures. To distinguish these behaviors, we plot
1 − λAFM as a function of 1=T in Fig. 2(a). These plots
demonstrate that the ground state is AFM for J ≤ 1.2 and
paramagnetic for J ≥ 1.4. The data at J ¼ 1.3 show a clear
size dependence, which is common to the AFM ground
state. Therefore, we conclude that J ¼ 1.3 is in the AFM
region, and the quantum phase transition is estimated at
JDFc ¼ 1.35� 0.05. This value agrees with the QMC result
within 10%, and shows considerable improvement from
the DMFT result JDMFT

c ≒ 2.18. These estimates of
Jc are summarized in Fig. 2(b) together with an intensity
plot of the AFM fluctuations. The critical region, e.g.,
1 − λAFM ≲ 10−2, forms a dome that is similar to the phase
boundary in the DMFT.

+ + ... + + + ...
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+ + + ...

FIG. 1. Diagrams for (a) the dual self-energy ~Σ and (b) the
pairing vertex ΓPP. The lines and squares represent ~G and γ,
respectively.
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FIG. 2 (color online). (a) The leading eigenvalue λAFM for the
AFM fluctuations at half filling, n ¼ 1. The dashed lines indicate
the critical behavior 1 − λAFM ∝ e−βΔ. (b) An intensity plot of
λAFM in the J − T plane. The points indicate QCP estimated by
QMC calculations, DMFT, and our approximation (DF). The
dashed line shows the phase boundary computed in DMFT.
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Superconductivity.—We now compute superconducting
instabilities near half filling. We solve the linearized
Bethe-Salpeter equation for pairing correlations,
−ðT=NÞPk0

~Gk
~G−kΓPP

kk0ϕk0 ¼ λSCϕk, where k ¼ ðω; kÞ.
For the irreducible vertex part ΓPP

kk0 , we take account of
ladder-type vertex corrections in Fig. 1(b) to describe
pairing interactions mediated by AFM fluctuations [16].
As in the case of AFM ordering, the superconducting
transition can be detected by the condition λSC ¼ 1. We
computed the leading eigenvalues λSC for all types of
pairing symmetry, i.e., 2 spin channels (singlet or triplet)
and 5 spatial symmetries classified according to the
irreducible representations of the point group D4.
Figure 3(a) shows temperature dependence of λSC for

n ¼ 0.84 in the weak-coupling regime, J ¼ 0.8 < Jc. The
leading instability is the spin-singlet pairing with B1g

symmetry as expected. However, other symmetries in the
spin-singlet channel show comparable enhancement in
contrast to the Hubbard model [16]. In particular, the Eu
pairing is nearly degenerate with B1g and becomes the
leading instability in J ¼ 1.0 as also plotted in Fig. 3(a).
We note that the Eu pairing is an odd function in the
frequency domain as well as in the momentum space [28].
The momentum dependence of the eigenfunctions ϕω0k at
the lowest Matsubara frequency ω0 ¼ πT is plotted in
Fig. 3(a) for the three leading fluctuations. A common
feature is found: The nesting vector Q≡ ðπ; πÞ connects
strong-intensity regions with opposite signs. It indicates
that those pairings are due to AFM fluctuations. The
angular dependence for B1g and Eu are expressed as

ϕ
B1g

k ∝ cos kx − cos ky; ð5Þ

ϕEu
k ∝ sin kξðξ ¼ x; yÞ; ð6Þ

which may be referred to as d wave and p wave,
respectively. The transition temperature determined from
the condition λSC ¼ 1 is shown in Fig. 4(b). The d SC
occurs in the weak-coupling regime J ≲ 0.9, while the
p-wave superconductivity has a higher transition temper-
ature in J ≳ 0.9. We observed a similar behavior in the
wide-doping range of n ≳ 0.80.
It is noteworthy here that the competing d-wave and

p-wave superconductivities have been discussed in a
context of CeRhIn5 and CeCu2Si2 [30]. By a phenomeno-
logical treatment of the AFM QCP, properties of the
p-wave singlet superconductivity were investigated.
As J is increased further beyond Jc, on the other hand,

we observed the leading s-wave fluctuations. Figure 3(b)
shows λSC and ϕω0k for J ¼ 1.8 and n ¼ 0.92. The
eigenfunction of the s-wave fluctuations has the momen-
tum dependence expressed by

ϕ
A1g

k ∝ cos kx þ cos ky; ð7Þ

which may be referred to as an extended-s wave. The
enhanced s-wave pairing was observed in the low-doped
and strong-coupling regime, n ≳ 0.88 and J ≳ Jc.
However, we did not find a transition to the s-wave
superconductivity, i.e., a parameter set which gives
λSC ¼ 1, or could not reach low enough temperatures
because of a bad convergence of the bath function Δω.
In order to identify the driving force of the s-wave

fluctuations, we performed DMFT calculations without
dual fermions as well. In this case, no enhancement of the
fluctuations was observed within temperatures we have
reached [31]. Therefore, we conclude that spatial correla-
tions are relevant for enhancement of the s-wave fluctua-
tions. An s-wave superconductivity was recently reported
in the periodic Anderson model [33], and its connection
with our results is left for future investigations.
Quasiparticle band.—We discuss quasiparticle proper-

ties to reveal the origin of the competing superconducting
fluctuations. Two contrasting spectra Aðk;ωÞ ¼
−π−1ImGωk are shown in Fig. 4(a). Here, we used the
Padé approximation for analytic continuations. The non-
interacting dispersion ϵk can be traced in J ¼ 0.8, while the
spectrum exhibits a distinct hybridization gap in J ¼ 2.6 as
a consequence of the Kondo screening. The formation of
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FIG. 3 (color online). Temperature dependence of the leading
eigenvalues λSC for pairing fluctuations. The intensity plots show
the corresponding eigenfunctions ϕω0k in the momentum space
for the three largest fluctuations. The arrows indicate the nesting
vector Q≡ ðπ; πÞ. (a) J ¼ 0.8, n ¼ 0.84 and (b) J ¼ 1.8,
n ¼ 0.92. The system size is N ¼ 322 [29].
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quasiparticles can be quantified in terms of the topology of
the Fermi surface (Fermi line in two dimensions) [9]. To
this end, we evaluated the area nFS surrounded by the Fermi
line:

nFS ¼
2

N

X

k

Θðμ − ϵk − ReΣω¼0;kÞ; ð8Þ

where Θ is the step function. A crossover between the
noninteracting band (nFS ¼ n) and the heavy-fermion band
(nFS ¼ nþ 1) is thus visualized in the J − T plane in
Fig. 4(b). It is worth noting that the crossover region
coincides with the coupling region where the change of the
pairing symmetry is observed.
In what follows, we discuss the origin of the competing

superconducting fluctuations in connection with the cross-
over of the Fermi-surface structure. As we have pointed
out, both d-wave and p-wave pairings are induced by AFM
fluctuations. The d wave is in particular favorable in the
weak-coupling regime because the intensities of ϕω0k lie
around the van Hove points, i.e., k1 ¼ ðπ; 0Þ. The advan-
tage of the d SC, however, diminishes as the hybridization
band is formed. The p-wave superconductivity instead
emerges in the crossover region between small and large
Fermi surfaces as shown in Fig. 4(b). In this region, low-
energy excitations exist around k2 ¼ ðπ=2; π=2Þ rather than
around the van Hove points k1. Therefore, the scattering

between k2 and −k2 gives a major contribution to pairing
interactions to favor the p-wave symmetry. Furthermore,
the dynamical nature of quasiparticle interactions is rel-
evant for a realization of odd-frequency pairings [28,30]. In
the present formalism, the vertex γ plays its role, and it
indeed has a strong frequency dependence in the heavy-
fermion regime.
In summary, the d SC is not particularly favored in the

Kondo lattice even though the nesting at q ¼ ðπ; πÞ gives
rise to critical AFM fluctuations. The key feature that yields
differences with the Hubbard model is the Fermi-surface
crossover: The nesting of the noninteracting band governs
the magnetic instability, while the hybridization band is
formed over the evolution of heavy quasiparticles. The
“incomplete” quasiparticles in the crossover regime
undergo the critical AFM fluctuations, resulting in emer-
gent quantum states such as the p-wave spin-singlet
superconductivity.
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