Unkonventionelle Supraleitung WS 05/06 Lösungen zur Serie S1

Multiple superconducting phase transitions.

S1 First of all, we consider a system with tetragonal crystal structure and strong spin-orbit coupling. For the two-component order parameter $\vec{\eta} = (\eta_x, \eta_y)$ corresponding to two basis functions of the two dimensional representation, the Ginzburg-Landau free energy density f is given as follows.

$$f = a'(T - T_c)|\vec{\eta}|^2 + b_1|\vec{\eta}|^4 + \frac{b_2}{2}\{\eta_x^{*2}\eta_y^2 + \eta_x^2\eta_y^{*2}\} + b_3|\eta_x|^2|\eta_y|^2$$
(1)

$$= a'(T - T_c)\{|\eta_x|^2 + |\eta_y|^2\} + b_1 |\{|\eta_x|^2 + |\eta_y|^2\}|^2 + \frac{b_2}{2}\{\eta_x^{*2}\eta_y^2 + \eta_x^2\eta_y^{*2}\} + b_3|\eta_x|^2|\eta_y|^2$$
 (2)

$$= a'(T - T_{c})\{|\eta_{x}|^{2} + |\eta_{y}|^{2}\} + b_{1}\{|\eta_{x}|^{4} + |\eta_{y}|^{4} + 2|\eta_{x}|^{2}|\eta_{y}|^{2}\} + \frac{b_{2}}{2}\{\eta_{x}^{*2}\eta_{y}^{2} + \eta_{x}^{2}\eta_{y}^{*2}\} + b_{3}|\eta_{x}|^{2}|\eta_{y}|^{2}.$$
(3)

Here, we have omitted the gradient terms and the magnetic field term assuming a spatially uniform system under zero magnetic field. The coefficients a' (> 0) and b_i (i = 1, 2, 3) are real numbers.

Now, let us consider the situation that the symmetry of the above system is reduced from the tetragonal symmetry (D_{4h}) to the orthorhombic one (D_{2h}) . (That is, the x and y directions become inequivalent.) The symmetry reduction lifts the degeneracy of the two components η_x and η_y , leading to different transition temperatures for η_x and η_y .

The second order term of f becomes

$$a'(T - T_c)\{|\eta_x|^2 + |\eta_y|^2\}$$
 \rightarrow $a'(T - T_{cx})|\eta_x|^2 + a'(T - T_{cy})|\eta_y|^2.$ (4)

Here, we assume that the degeneracy lifting is small such that T_{cx} and T_{cy} are only slightly different, i.e., $|T_{cx} - T_{cy}| \ll T_{cx}$, T_{cy} .

Assuming $T_{cx} > T_{cy}$, the first superconducting transition occurs at $T = T_{cx}$. That is, $\vec{\eta} = (0,0) \rightarrow \vec{\eta} = (\eta_x,0)$ at $T = T_{cx}$. Then, the second transition from this phase $\vec{\eta} = (\eta_x,0)$ to lower-temperature phase $\vec{\eta} = (\eta_x,\eta_y)$, occurs at $T = T'_{cy}$ ($< T_{cx}$).

In summary:

•
$$\vec{\eta} = (0,0)$$
 at $T > T_{cx}$

•
$$\vec{\eta} = (\eta_x, 0)$$
 at $T_{cx} \ge T > T'_{cy}$

•
$$\vec{\eta} = (\eta_x, \eta_y)$$
 at $T \le T'_{cy}$

For $T > T'_{cy}$ ($\eta_y = 0$), Eqs. (3) and (4) lead to

$$f = a'(T - T_{cx})|\eta_x|^2 + b_1|\eta_x|^4.$$
(5)

As usual (considering $\partial f/\partial \eta_x^* = 0$), this has a minimum at

$$|\eta_x(T)|^2 = \frac{-a'(T - T_{cx})}{2b_1},\tag{6}$$

when $b_1 > 0$ and $T < T_{cx}$.

For $T < T'_{cy}$ $(\eta_y \neq 0)$, Eqs. (3) and (4) lead to

$$f = a'(T - T_{cx})|\eta_x|^2 + a'(T - T_{cy})|\eta_y|^2 + b_1\{|\eta_x|^4 + |\eta_y|^4 + 2|\eta_x|^2|\eta_y|^2\} + \frac{b_2}{2}\{\eta_x^{*2}\eta_y^2 + \eta_x^2\eta_y^{*2}\} + b_3|\eta_x|^2|\eta_y|^2.$$
 (7)

It is known that T'_{cy} is different from T_{cy} . In what follows, let us calculate this second transition temperature T'_{cy} .

Let us recall the Ginzburg-Landau free energy with a single component order parameter ψ :

$$f = A|\psi|^2 + B|\psi|^4, (8)$$

where B > 0. When the coefficient A of the quadratic term $|\psi|^2$ is negative A < 0, this free energy has a minimum at a finite value of $|\psi|$, $(|\psi| \neq 0)$. On the other hand, when $A \geq 0$, it has a minimum at $|\psi| = 0$.

Keeping the above in mind, we consider the quadratic terms ($\equiv f_{y2}$) of η_y in the Ginzburg-Landau free energy density [Eq. (7)],

$$f = \left\{ a'(T - T_{cx})|\eta_x|^2 + b_1|\eta_x|^4 \right\} + f_{y2} + b_1|\eta_y|^4, \tag{9}$$

where the quadratic terms of η_y are

$$f_{y2} = a'(T - T_{cy})|\eta_y|^2 + 2b_1|\eta_x|^2|\eta_y|^2 + \frac{b_2}{2}\{\eta_x^{*2}\eta_y^2 + \eta_x^2\eta_y^{*2}\} + b_3|\eta_x|^2|\eta_y|^2$$
 (10)

$$= \left[a'(T - T_{cy}) + (2b_1 + b_3)|\eta_x|^2 \right] |\eta_y|^2 + \frac{b_2}{2} \{ \eta_x^{*2} \eta_y^2 + \eta_x^2 \eta_y^{*2} \}. \tag{11}$$

 f_{y2} can be rewritten as

$$f_{y2} = (\eta_y^*, \eta_y) \frac{1}{2} \begin{pmatrix} a'(T - T_{cy}) + (2b_1 + b_3)|\eta_x|^2 & b_2\eta_x^2 \\ b_2\eta_x^{*2} & a'(T - T_{cy}) + (2b_1 + b_3)|\eta_x|^2 \end{pmatrix} \begin{pmatrix} \eta_y \\ \eta_y^* \end{pmatrix}$$
(12)

$$\equiv \frac{1}{2} (\eta_y^*, \eta_y) \hat{A} \begin{pmatrix} \eta_y \\ \eta_y^* \end{pmatrix}. \tag{13}$$

Now,

$$\hat{A} \equiv \begin{pmatrix} a & b \\ c & a \end{pmatrix}. \tag{14}$$

$$\det(\hat{A} - E\hat{1}) = 0. \tag{15}$$

$$\rightarrow \qquad (a-E)^2 - bc = 0. \tag{16}$$

$$\to E^2 - 2aE + a^2 - bc = 0. (17)$$

$$\rightarrow \qquad E = a \pm \sqrt{a^2 - (a^2 - bc)} \tag{18}$$

$$= a \pm \sqrt{bc} \tag{19}$$

$$= a'(T - T_{cy}) + (2b_1 + b_3)|\eta_x|^2 \pm \sqrt{(b_2\eta_x^2)(b_2\eta_x^{*2})}$$
 (20)

$$= a'(T - T_{cy}) + (2b_1 + b_3)|\eta_x|^2 \pm \sqrt{b_2^2|\eta_x|^4}$$
 (21)

$$= a'(T - T_{cy}) + (2b_1 + b_3)|\eta_x|^2 \pm b_2|\eta_x|^2$$
 (22)

$$= a'(T - T_{cu}) + (2b_1 + b_3 \pm b_2)|\eta_x|^2.$$
 (23)

The eigen vectors are

$$\begin{pmatrix} b \\ \sqrt{bc} \end{pmatrix}$$
 for $E = a + \sqrt{bc}$ $\left(E = a'(T - T_{cy}) + (2b_1 + b_3 + b_2)|\eta_x|^2 \right)$, (24)

$$\begin{pmatrix} b \\ -\sqrt{bc} \end{pmatrix}$$
 for $E = a - \sqrt{bc}$ $\left(E = a'(T - T_{cy}) + (2b_1 + b_3 - b_2)|\eta_x|^2 \right)$. (25)

From these eigen vectors, we define the following matrices ($\hat{U}\hat{U}^{-1} = \hat{U}^{-1}\hat{U} = \hat{1}$).

$$\hat{U} = \begin{pmatrix} b & b \\ \sqrt{bc} & -\sqrt{bc} \end{pmatrix}, \qquad \hat{U}^{-1} = \frac{1}{2b\sqrt{bc}} \begin{pmatrix} \sqrt{bc} & b \\ \sqrt{bc} & -b \end{pmatrix}. \tag{26}$$

The matrix A is then digonalized as

$$\hat{U}^{-1}\hat{A}\hat{U} = \frac{1}{2b\sqrt{bc}} \begin{pmatrix} \sqrt{bc} & b \\ \sqrt{bc} & -b \end{pmatrix} \begin{pmatrix} a & b \\ c & a \end{pmatrix} \begin{pmatrix} b & b \\ \sqrt{bc} & -\sqrt{bc} \end{pmatrix}$$
(27)

$$= \frac{1}{2b\sqrt{bc}} \begin{pmatrix} \sqrt{bc} & b \\ \sqrt{bc} & -b \end{pmatrix} \begin{pmatrix} ab + b\sqrt{bc} & ab - b\sqrt{bc} \\ bc + a\sqrt{bc} & bc - a\sqrt{bc} \end{pmatrix}$$
(28)

$$= \frac{1}{2b\sqrt{bc}} \begin{pmatrix} \sqrt{bc} & b \\ \sqrt{bc} & -b \end{pmatrix} \begin{pmatrix} ab + b\sqrt{bc} & ab - b\sqrt{bc} \\ bc + a\sqrt{bc} & bc - a\sqrt{bc} \end{pmatrix}$$

$$= \frac{1}{2b\sqrt{bc}} \begin{pmatrix} \sqrt{bc} & b \\ \sqrt{bc} & -b \end{pmatrix} \begin{pmatrix} b(a + \sqrt{bc}) & b(a - \sqrt{bc}) \\ \sqrt{bc}(a + \sqrt{bc}) & -\sqrt{bc}(a - \sqrt{bc}) \end{pmatrix}$$
(28)

$$= \frac{1}{2b\sqrt{bc}} \left(\frac{2b\sqrt{bc}(a+\sqrt{bc})}{(b\sqrt{bc}+b\sqrt{bc})(a-\sqrt{bc})} \frac{(b\sqrt{bc}-b\sqrt{bc})(a-\sqrt{bc})}{2b\sqrt{bc}(a-\sqrt{bc})} \right)$$
(30)

$$= \begin{pmatrix} a + \sqrt{bc} & 0\\ 0 & a - \sqrt{bc} \end{pmatrix}. \tag{31}$$

And

$$\hat{U}^{-1} \begin{pmatrix} \eta_y \\ \eta_y^* \end{pmatrix} = \frac{1}{2b\sqrt{bc}} \begin{pmatrix} \sqrt{bc} & b \\ \sqrt{bc} & -b \end{pmatrix} \begin{pmatrix} \eta_y \\ \eta_y^* \end{pmatrix}$$
(32)

$$= \frac{1}{2b\sqrt{bc}} \left(\frac{\sqrt{bc}\eta_y + b\eta_y^*}{\sqrt{bc}\eta_y - b\eta_y^*} \right)$$
(33)

$$(\eta_y^*, \eta_y) \hat{U} = (\eta_y^*, \eta_y) \begin{pmatrix} b & b \\ \sqrt{bc} & -\sqrt{bc} \end{pmatrix}$$
(34)

$$= (\sqrt{bc}\eta_y + b\eta_y^*, -(\sqrt{bc}\eta_y - b\eta_y^*))$$
(35)

Hence, f_{y2} is expressed as

$$f_{y2} = \frac{1}{2} \left(\eta_y^*, \quad \eta_y \right) \hat{A} \begin{pmatrix} \eta_y \\ \eta_y^* \end{pmatrix} \tag{36}$$

$$= \frac{1}{2} \left(\eta_y^*, \quad \eta_y \right) \hat{U}(\hat{U}^{-1} \hat{A} \hat{U}) \hat{U}^{-1} \begin{pmatrix} \eta_y \\ \eta_y^* \end{pmatrix} \tag{37}$$

$$= \left(\sqrt{bc}\eta_y + b\eta_y^*, -(\sqrt{bc}\eta_y - b\eta_y^*)\right) \begin{pmatrix} a + \sqrt{bc} & 0\\ 0 & a - \sqrt{bc} \end{pmatrix} \frac{1}{2b\sqrt{bc}} \begin{pmatrix} \sqrt{bc}\eta_y + b\eta_y^*\\ \sqrt{bc}\eta_y - b\eta_y^* \end{pmatrix}$$
(38)

$$= \frac{1}{2b\sqrt{bc}} \left[(a + \sqrt{bc})(\sqrt{bc}\eta_y + b\eta_y^*)^2 - (a - \sqrt{bc})(\sqrt{bc}\eta_y - b\eta_y^*)^2 \right]$$
(39)

Here, without loss of generality, we assume η_x is real. Then, recalling the definitions $b=b_2\eta_x^2$ and $c=b_2\eta_x^{*2}$, we have a relation $\sqrt{bc}=b=b_2\eta_x^2$. Thus,

$$f_{y2} = \frac{1}{2b\sqrt{bc}} \left[(a + \sqrt{bc})(\sqrt{bc}\eta_y + b\eta_y^*)^2 - (a - \sqrt{bc})(\sqrt{bc}\eta_y - b\eta_y^*)^2 \right]$$
(40)

$$= \frac{1}{2b^2} \left[(a+b)(b\eta_y + b\eta_y^*)^2 - (a-b)(b\eta_y - b\eta_y^*)^2 \right]$$
 (41)

$$= \frac{1}{2} \left[(a+b)(\eta_y + \eta_y^*)^2 - (a-b)(\eta_y - \eta_y^*)^2 \right]. \tag{42}$$

The order parameters $\eta_y + \eta_y^*$ and $\eta_y - \eta_y^*$ are real and imaginary numbers, respectively. We, therefore, define $\eta_{yr} \equiv \eta_y + \eta_y^*$ and $i\eta_{yi} \equiv \eta_y - \eta_y^*$ with η_{yr} and η_{yi} real. Then,

$$f_{y2} = \frac{1}{2} \left[(a+b)(\eta_{yr})^2 - (a-b)(i\eta_{yi})^2 \right]$$
 (43)

$$= \frac{1}{2} \left[(a+b)\eta_{yr}^2 + (a-b)\eta_{yi}^2 \right]. \tag{44}$$

Because we have assumed η_x is real, the coefficients $a \pm b$ are

$$a \pm b = a'(T - T_{cy}) + (2b_1 + b_3)|\eta_x|^2 \pm b_2\eta_x^2$$
 (45)

$$= a'(T - T_{cu}) + (2b_1 + b_3 \pm b_2)|\eta_x|^2$$
(46)

$$= a' \left(T - T_{cy} + \frac{(2b_1 + b_3 \pm b_2)|\eta_x|^2}{a'} \right) \tag{47}$$

$$= a' \left(T - T_{\pm} \right), \tag{48}$$

where

$$T_{\pm} \equiv T_{cy} - \frac{(2b_1 + b_3 \pm b_2)|\eta_x|^2}{a'}.$$
 (49)

Substituting $|\eta_x(T)|^2$ in Eq. (6) into this,

$$T_{\pm} \equiv T_{cy} - \frac{(2b_1 + b_3 \pm b_2) \frac{-a'(T - T_{cx})}{2b_1}}{a'}$$
 (50)

$$= T_{cy} + \frac{(2b_1 + b_3 \pm b_2)(T - T_{cx})}{2b_1}$$
 (51)

$$\equiv T_{cy} + R_{\pm}(T - T_{cx}). \tag{52}$$

Therefore,

$$a \pm b = a' \left(T - T_{\pm} \right), \tag{53}$$

$$= a'T - a' \left[T_{cy} + R_{\pm} (T - T_{cx}) \right]$$
 (54)

$$= a'(1 - R_{\pm})T - a'T_{cy} + a'R_{\pm}T_{cx}$$
 (55)

$$= a'(1 - R_{\pm}) \left(T - \frac{T_{cy} - R_{\pm}T_{cx}}{1 - R_{+}} \right)$$
 (56)

$$= a'(1 - R_{\pm})(T - T_{y\pm}). \tag{57}$$

Here,

$$T_{y\pm} \equiv \frac{T_{cy} - R_{\pm}T_{cx}}{1 - R_{\pm}} \tag{58}$$

$$= T_{cy} \frac{1 - R_{\pm} T_{cx} / T_{cy}}{1 - R_{+}}, \tag{59}$$

with

$$R_{\pm} = \frac{2b_1 + b_3 \pm b_2}{2b_1} \tag{60}$$

$$= 1 + \frac{b_3 \pm b_2}{2b_1}. (61)$$

Finally, from Eqs. (9), (44), (57), the Ginzburg-Landau free energy density is expressed as follows.

$$f = \left\{ a'(T - T_{cx})|\eta_x|^2 + b_1|\eta_x|^4 \right\} + f_{y2} + b_1|\eta_y|^4$$
(62)

$$= \left\{ a'(T - T_{cx})|\eta_x|^2 + b_1|\eta_x|^4 \right\} + \frac{1}{2} \left[(a+b)\eta_{yr}^2 + (a-b)\eta_{yi}^2 \right] + b_1|\eta_y|^4$$
 (63)

$$= \left\{ a'(T - T_{cx})|\eta_x|^2 + b_1|\eta_x|^4 \right\} + \frac{1}{2} \left[a'(1 - R_+) \left(T - T_{y+} \right) \eta_{yr}^2 + a'(1 - R_-) \left(T - T_{y-} \right) \eta_{yi}^2 \right] + b_1|\eta_y|^4.$$
(64)

From the coefficients of the quadratic terms of η_y , we conclude that the second transition temperature T'_{cy} is given by

$$T'_{cy} = \max\{T_{y+}, T_{y-}\}. \tag{65}$$

At $T < T'_{cy}$, $\vec{\eta} = (\eta_x, \eta_{yr})$ if $T'_{cy} = T_{y+}$. On the other hand, $\vec{\eta} = (\eta_x, i\eta_{yi})$ if $T'_{cy} = T_{y-}$. (Here, η_x , η_{yr} , and η_{yi} are assumed to be real.)