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Losungen zur Serie 11

11 Let us consider the superconductivity in a system with tetragonal crystal structure
and strong spin-orbit coupling discussed in the theory lecture notes. For superconducting
phases described by two-component order parameter 77 = (1, 1,) corresponding to two basis
functions of the two dimensional representation [Eq. (4.20) or (166) in the theory lecture
notes|, the Ginzburg-Landau free energy density f in the spatially uniform case under zero

magnetic field is given as follows [see Eq. (4.21) or (167)].
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Here, we have omitted the gradient terms and the magnetic field term because of the spatially

uniformity assumed. The coefficients a(7) and b; (i = 1,2,3) are real numbers. a(T") < 0
for T < T..

a) Taking the variation of f with respect to n; (0f/dn; = 0) and n;; (0f/0n; = 0), we

obtain two coupled Ginzburg-Landau equations:

(T + b1 {20 1 + 20 lmy >} + bomi + bamelny|* =0, (4)
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= a(T)me + 261 { Ina + [, + b2 + b3l Pne = 0, (6)
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b) Let us parameterize the order parameters 7, and 7, as

(12, my) = (1m0 cos @, Mmoe™ sin @), (8)

with 7o real, a (—7/2 < a < 7/2), and v (0 < v < 27).
Substituting this into the Ginzburg-Landau free energy density (2),
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From now on, let us assume b; > 0.

c) Because a(T) < 0, the condition for f to have a minimum with respect to 7 is that the

coefficient of the second term in Eq. (13) is positive, namely
4by + sin? 2au(by cos 27y + bs) > 0. (14)

We define B = 4b; + sin® 2a(by cos 2y + b3). The free energy density f [Eq. (13)] reads:
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f=a(T)ms+ 5

Taking the variation of f with respect to ny (9f/0ny = 0),

2a(T)no + Bnj = 0. (16)

— 2a(T) + Bng = 0. (17)

- = 2D (18)
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4by + sin? 2a(by cos 2y + bs)

This 72 yields a minimum of f. Substituting it into Eq. (15), we obtain the minimum of f
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4by + sin® 2a(by cos 2y + b3)

d) Next, let us minimize f with respect to the parameter a. The free energy density f in

Eq. (24) has a minimum when its denominator (> 0) is minimized.
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If (by cos 2+b3) > 0, the free energy density in Eq. (24) has a minimum when sin? 2a = 0,
namely when o = 0, 7/2. On the other hand, if (bycos2y + b3) < 0, the free energy
density has a minimum when sin? 2 = 1, namely when o = +7/4. Recalling (1,,7,) =

(no cos @, mpe?? sin ), we have

(&, iﬂe”) (bycos2y + b3 <0, 4by + bycos2y + b3 > 0)

V2' V2 (25)

(10,0) or (0,m9e") (bycos2y + b3 >0, 4b > 0)

(7795, ny) =

Here, we have taken account of the condition represented by Eq. (14), too.

e) Finally, let us minimize f with respect to the parameter .

When (bg cos 2y 4 b3) < 0, the smallest value of by cos 2y minimizes f. In this case, the
values v = 0 and v = 7 minimize f if by < 0, while v = 7/2 and v = 37/2 minimize f if
by > 0. That is to say,
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(77907 Uy) = (%, i%) (bg +b3 <0, by<O0, 4by+by+b3> 0) (26)
(m0,0) or (0,m0e™) (bacos2y +b3 >0, b >0)

When (by cos 2y + b3) > 0, sin?2a = 0 as noticed above. In this case, the free energy
density f in Eq. (24) is independent of . Therefore, we can choose the phase v arbitrarily.

The superconducting phases represented by the order parameters in Eq. (26) correspond
to the phases A, B, and C discussed in the theory lecture notes (see Fig. 7.1 or Fig. 10
therein). The phases A, B, and C correspond to the order parameters from top to bottom
in Eq. (26), respectively. From the above result, one can easily confirm that the free energy
density (f < 0) in Eq. (24) is lower for the phases A and B [corresponding to the first
(A) and second (B) lines in Eq. (26)] than for the phase C [the third line]. (Consider the
denominator of f, the value of «, and the sign of the factor (by cos 2y + b3) for each phase.)
Therefore, concerning the phase diagram in the (bs, b3) parameter space, the phase A or B
is energetically more favorable than the C phase in the region where the inequalities in the

first or second line in Eq. (26) are satisfied.



