Unkonventionelle Supraleitung

Serie 6

Verteilung: 6.Dezember

Abgabe: 13.Dezember

The density of states per both spin projections and per unit volume is defined as

$$N(E) = \frac{1}{V} \sum_{k} \delta(E_k - E),$$

where E_k is the quasiparticle energy spectrum in the superconducting state, and V is the volume of the system. For the spin-triplet unitary states (and the spin-singlet states), E_k (≥ 0) is given by

$$E_k = \sqrt{\xi_k^2 + |\Delta_k|^2}, \quad \text{with} \quad |\Delta_k|^2 = \frac{1}{2} \text{Tr}[\hat{\Delta}_k \hat{\Delta}_k^{\dagger}],$$

where ξ_k is the energy spectrum in the normal state, ($\xi_k = 0$ at the Fermi level). Then, N(E) (for $E \ge 0$) is

$$N(E) = \frac{1}{V} \sum_{k} \delta(\sqrt{\xi_k^2 + |\Delta_k|^2} - E)$$

$$= \int \frac{d\Omega_k}{4\pi} \int_{-\infty}^{\infty} d\xi_k D(\xi_k) \delta(\sqrt{\xi_k^2 + |\Delta_k|^2} - E)$$

$$\approx D(0) \int \frac{d\Omega_k}{4\pi} \int_{-\infty}^{\infty} d\xi_k \delta(\sqrt{\xi_k^2 + |\Delta_k|^2} - E)$$

$$= \frac{N_0}{2} \int \frac{d\Omega_k}{4\pi} \int_{-\infty}^{\infty} d\xi_k \delta(\sqrt{\xi_k^2 + |\Delta_k|^2} - E)$$

$$= N_0 \int \frac{d\Omega_k}{4\pi} \int_{0}^{\infty} d\xi_k \delta(\sqrt{\xi_k^2 + |\Delta_k|^2} - E),$$

where N_0 is the density of states in the normal state at the Fermi level per both spin projections and per unit volume. $(D(\xi_k))$ is the density of states in the normal state per spin projection and per unit volume. In the above integrand, only the vicinity of the Fermi surface $(\xi_k \sim 0)$ is important, because we are interested in the low-energy excitations E. Therefore, we have approximated $D(\xi_k) \approx D(0)$.)

6.1 Show that N(E) (for $E \ge 0$) is written as

$$N(E) = N_0 \int \frac{d\Omega_k}{4\pi} \text{Re} \frac{E}{\sqrt{E^2 - |\Delta_k|^2}}.$$

Here, "Re" means taking the real part.

<u>Hint</u>: Note that $\xi_k^2 = E_k^2 - |\Delta_k|^2$ and ξ_k is a real number.

- **6.2** Show that for the following three spin-triplet unitary states, the density of states N(E) (for $E \ge 0$) is given as follows. $(\hat{k} = (\hat{k}_x, \hat{k}_y, \hat{k}_z) = \vec{k}/|\vec{k}|)$
- (1) For the ABM state $\vec{d}_k = \Delta_0(0, 0, \hat{k}_x + i\hat{k}_y)$,

$$N(E) = N_0 \frac{E}{2|\Delta_0|} \ln \left| \frac{E + |\Delta_0|}{E - |\Delta_0|} \right|.$$

(2) For the BW state $\vec{d_k} = \Delta_0(\hat{k}_x, \hat{k}_y, \hat{k}_z)$,

$$N(E) = \begin{cases} N_0 \frac{E}{\sqrt{E^2 - |\Delta_0|^2}} & (E > |\Delta_0|) \\ 0 & (0 \le E < |\Delta_0|) \end{cases}$$

(3) For the polar state $\vec{d}_k = \Delta_0(0, 0, \hat{k}_z)$,

$$N(E) = \begin{cases} N_0 \frac{E}{|\Delta_0|} \arcsin\left(\frac{|\Delta_0|}{E}\right) & (E > |\Delta_0|) \\ N_0 \frac{E}{|\Delta_0|} \frac{\pi}{2} & (0 \le E < |\Delta_0|) \end{cases}$$

<u>Hint</u>: One may utilize the formulas:

$$\int dt \frac{1}{\sqrt{t^2 + a}} = \ln \left| \left(t + \sqrt{t^2 + a} \right) \right|,$$

$$\int dt \frac{1}{\sqrt{b^2 - t^2}} = \arctan \left(\frac{t}{\sqrt{b^2 - t^2}} \right). \qquad \left(|b| \ge |t|, \quad -\frac{\pi}{2} \le \arctan(\cdots) \le \frac{\pi}{2} \right)$$